
MAT 275

Random Number Generation in a 

Specified Interval in C++

contact@thebinarysolutionsllc.com



Introduction

This program generates random numbers within a given interval [−2,5]

and stores them in a two-dimensional array. It demonstrates the usage of

the ‘rand()’ function in C++ to generate random numbers and the concept

of seeding the random number generator.

contact@thebinarysolutionsllc.com



Problem Statement

The task is to generate random numbers within the interval [−2,5] and

display them in a two-dimensional array format.

contact@thebinarysolutionsllc.com



Solution Steps

• Define the interval [−2,5] as variables ‘a’ and ‘b’.

• Seed the random number generator using the ‘srand()’ function with the

current time as the seed.

• Generate random numbers within the interval [−2,5] and store them in a

two-dimensional array ‘r’.

• Display the generated random numbers in the specified format.

contact@thebinarysolutionsllc.com



Pseudo Code
 Include necessary header files (iostream, cstdlib, ctime).

 Begin main function.

 Define interval [a, b] as [-2, 5]:

o Declare and initialize variables 'a' and 'b' as integers with values -2 and 5, respectively.

 Seed the random number generator:

Use the current time as a seed to initialize the random number generator.

o Generate random numbers in the interval [a, b]:

o Define constants 'rows' and 'cols' as 8 and 5, respectively.

o Declare a 2D array 'r' of integers with dimensions 'rows' by 'cols'.

o Iterate over each element in the array 'r':

o Generate a random number in the interval [a, b] and store it in the current element.

 Display the generated random numbers:

o Output a label "Generated Random Numbers:" to the console.

o Iterate over each row in the array 'r':

o Iterate over each element in the current row:

o Output the value of the current element followed by a space.

o Output a newline to move to the next row.

 End main function.
contact@thebinarysolutionsllc.com



C ++ Code
#include <iostream>

#include <cstdlib>

#include <ctime>

using namespace std;

int main() {

int a = -2;

int b = 5;

srand(time(nullptr));

const int rows = 8;

const int cols = 5;

int r[rows][cols];

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

r[i][j] = a + rand() % (b - a + 1); }

}

cout << "Generated Random Numbers:" << endl;

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

cout << r[i][j] << " ";

}

cout << endl }

return 0;}
contact@thebinarysolutionsllc.com



Code Explanation 

 #include <iostream>#include <cstdlib>#include <ctime>using namespace std;

These lines include the necessary header files: ‘<iostream>’ for input/output stream functionality, ‘<cstdlib>’ for

functions involving random numbers, and ‘<ctime>’ for functions involving time.

 int main() {

This line marks the beginning of the ‘main’ function, which serves as the entry point of the program.

 int a = -2; int b = 5;

These lines define the interval ‘[a, b]’ as ‘[-2, 5]’.

 srand(time(nullptr));

This line seeds the random number generator using the current time, ensuring that different random sequences are

generated on each program run.

contact@thebinarysolutionsllc.com



Code Explanation 

 const int rows = 8; const int cols = 5; int r[rows][cols]; for (int i = 0; i < rows; ++i) { for (int j = 0;

j < cols; ++j) { r[i][j] = a + rand() % (b - a + 1); } }

This section generates random numbers in the interval ‘[a, b]’ and stores them in a 2D array ‘r’ of size ‘rows x cols’.

 cout << "Generated Random Numbers:" << endl; for (int i = 0; i < rows; ++i) { for (int j = 0; j <

cols; ++j) { cout << r[i][j] << " "; } cout << endl; }

This section outputs the generated random numbers to the standard output (typically the console) in a formatted

manner.

 return 0;}

This line indicates the end of the ‘main’ function and returns an integer value of ‘0’ to the operating system, typically

indicating successful execution.

contact@thebinarysolutionsllc.com



Final Answer

• The final output is the matrix

rr containing random numbers

within the interval [−2,5].

contact@thebinarysolutionsllc.com



Additional Comments/Tips

• Ensure the correctness of the specified interval and handle edge cases if

necessary.

• Note that the ‘rand()’ function might not produce truly random numbers

and should not be used for cryptographic purposes.

contact@thebinarysolutionsllc.com



contact@thebinarysolutionsllc.com

Conclusion

This program demonstrates the generation of random numbers within a

specified interval in C++, which is useful in various applications such as

simulations, games, and statistical analysis.


