
MAT 275

Radius Calculation on Polar Coordinate 

System in C++

contact@thebinarysolutionsllc.com



Introduction

This program calculates the radius corresponding to different angles on a

polar coordinate system. It demonstrates the usage of trigonometric

functions in C++ to convert polar coordinates to Cartesian coordinates and

then calculates the radius from these coordinates.

contact@thebinarysolutionsllc.com



Problem Statement

Given a set of angles (𝜃) and an initial radius value (𝑟), the program

computes the radius corresponding to each angle on the polar coordinate

system.

contact@thebinarysolutionsllc.com



Solution Steps

• Define a vector to store the angles (𝜃).

• Initialize the initial radius value (𝑟).

• Define vectors to store the x and y coordinates.

• Calculate the x and y coordinates for each angle using the trigonometric functions

cosine and sine.

• Compute the radius from the x and y coordinates using the Pythagorean theorem.

• Display the calculated radius values.

contact@thebinarysolutionsllc.com



Pseudo Code
 Include necessary header files (iostream, cmath, vector).

 Begin main function.

 Define angles:

o Create a vector called 'theta' to store angles in radians, initialized with specific values: 0, π/4, π/2, 3π/4, π, and 5π/4.

 Define initial radius:

o Declare and initialize a variable 'r' of type double with the initial radius value (2 in this case).

 Define vectors to store x and y coordinates:

o Create two vectors 'x' and 'y' of type double to store x and y coordinates, respectively, with sizes equal to the size of 

the 'theta' vector.

 Calculate x and y coordinates:

o For each angle 'theta[i]' in the 'theta' vector:

o Calculate x coordinate: x[i] = r * cos(theta[i])

o Calculate y coordinate: y[i] = r * sin(theta[i])

contact@thebinarysolutionsllc.com



Pseudo Code
 Calculate radius from x and y coordinates:

o Create a vector 'radius' of type double to store the calculated radius values.

o For each pair of x and y coordinates (x[i], y[i]):

o Calculate radius: radius[i] = sqrt(x[i]^2 + y[i]^2)

 Display radius:

o Output the label "radius:" to the console.

o For each radius value in the 'radius' vector:

o Output the radius value followed by a space.

o Output a newline character to move to the next line.

 End main function.

contact@thebinarysolutionsllc.com



C++ Code
#include <iostream>

#include <cmath>

#include <vector>

using namespace std;

int main() {

vector<double> theta = {0, M_PI / 4, M_PI / 2, 3 * M_PI / 4, M_PI, 5 * M_PI / 4};

double r = 2;

vector<double> x(theta.size());

vector<double> y(theta.size());

for (size_t i = 0; i < theta.size(); ++i) {

x[i] = r * cos(theta[i]);

y[i] = r * sin(theta[i]);

}

vector<double> radius(theta.size());

for (size_t i = 0; i < theta.size(); ++i) {

radius[i] = sqrt(pow(x[i], 2) + pow(y[i], 2));

}

// Display radius

cout << "radius:" << endl;

for (size_t i = 0; i < radius.size(); ++i) {

cout << radius[i] << " ";

}

cout << endl;

return 0;

} contact@thebinarysolutionsllc.com



Code Explanation
 #include <iostream>#include <cmath>#include <vector>using namespace std;

These lines include the necessary header files: ‘<iostream>’ for input/output stream functionality, ‘<cmath>’ for 

mathematical functions, and ‘<vector>’ for using vectors in C++.

 int main() {

This line marks the beginning of the ‘main’ function, which serves as the entry point of the program

 vector<double> theta = {0, M_PI / 4, M_PI / 2, 3 * M_PI / 4, M_PI, 5 * M_PI / 4};

This line defines a vector ‘theta’ of double-precision floating-point numbers and initializes it with a series of angles 

in radians.

 double r = 2;

This line defines a double-precision floating-point variable ‘r’ and initializes it with the initial value of the radius.

 vector<double> x(theta.size()); vector<double> y(theta.size());

These lines define two vectors ‘x’ and ‘y’ of double-precision floating-point numbers to store the x and y coordinates, 

respectively.
contact@thebinarysolutionsllc.com



Code Explanation
 for (size_t i = 0; i < theta.size(); ++i) { x[i] = r * cos(theta[i]); y[i] = r * sin(theta[i]); }

This loop calculates the ‘x’ and ‘y’ coordinates for each angle using the trigonometric functions ‘cos’ and ‘sin’, 

respectively, and stores them in the x and y vectors.

 vector<double> radius(theta.size()); for (size_t i = 0; i < theta.size(); ++i) { radius[i] = sqrt(pow(x[i], 2) + 

pow(y[i], 2)); }

This loop calculates the radius for each pair of x and y coordinates using the Euclidean distance formula and stores 

the result in the ‘radius’ vector.

 cout << "radius:" << endl; for (size_t i = 0; i < radius.size(); ++i) { cout << radius[i] << " "; } cout << endl;

This loop outputs the calculated radius values to the standard output (typically the console), separated by spaces.

 return 0;}

This line indicates the end of the ‘main’ function and returns an integer value of ‘0’ to the operating system, typically 

indicating successful execution.

contact@thebinarysolutionsllc.com



Final Answer

The final output is the radius

vector containing the calculated

‘radius’ values from Cartesian

coordinates.

contact@thebinarysolutionsllc.com



Additional Comments/Tips

• Ensure the correctness of the provided angles and initial radius value to

obtain accurate results.

• Consider handling edge cases, such as angles covering a full circle or

negative radius values.

contact@thebinarysolutionsllc.com



contact@thebinarysolutionsllc.com

Conclusion

This program showcases the transformation of polar coordinates to Cartesian

coordinates and the subsequent calculation of the radius on a polar coordinate

system. Understanding these computations is essential in various fields,

including physics, engineering, and computer graphics.


